Abstract

Redox-active compounds such as copper-phenanthroline are known as artificial/chemical nucleases with a great impact and potential for their applications as metallotherapeutics. In that vein, the mononuclear copper(II) complexes [Cu(L)2(bipy)] (1), [Cu(L)2(bipy)(H2O)] (2) and [Cu(L)2(phen)(H2O)] (3), where L = 2-thiophene carboxylate, bipy = 2,2΄-bipyridine and phen = 1,10-phenanthroline, have been prepared and pharmacochemically studied, while the crystal structure of 1 is also reported. All the tested complexes preferably bind to CT-DNA via minor groove as resulted from UV spectroscopy studies, luminescent titration, EB competition assays and viscosity measurements. Complexes 2 and 3 in aqua behave like a “light switch” for DNA. The intensity enhancement, with the increase of DNA concentration, reached about 3–fold for 2 and 10-fold for 3. In vitro antioxidant activity of compounds 1–3, was evaluated using two different antioxidant assays: a) interaction with 1,1-diphenyl-2-picryl-hydrazyl (DPPH) stable free radical and b) inhibition of lipid peroxidation. Moreover, their inhibitory activity on soybean lipoxygenase (LOX) was evaluated for their anti-inflammatory potency. The tested complexes showed good activity on both lipid peroxidation and soybean LOX inhibition while complex 2 exhibited the best antioxidant/anti-inflammatory activity. A computational analysis over the LOX protein structure 1JNQ was performed, in an effort to support their possible mode of action. The cytotoxicity of the complexes was determined and their efficacy against several human cancer cell lines (ovarian, OAW-42; lung, A549; colon, HT29; breast, MDA-MB-231; kidney, Caki-2; and cervical, Hela) and human non-tumor cell lines (lung, MRC-5; and breast, MTSV1-7) were evaluated. The best cytotoxic activity was appeared for complex 3. In silico, computational methods support antiestrogen activity of the administered complexes on normal breast cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.