Abstract

Mononuclear and binuclear chelates of biacetylmonoxime picolinoylhydrazone (H2BMPcH) with CrIII, FeIII, CoII, NiII, CuII, ZnII, CdII, PdII and UO2 2+ have been prepared. Elemental analyses, molar conductivities, spectral (u.v., visible, i.r., n.m.r., e.s.r.), thermal (t.g., d.t.g., d.t.a.) and magnetic susceptibility measurements have been used to characterize the chelates. The i.r. spectral data indicate that H2BMPcH behaves in a bidentate, tridentate and/or tetradentate manner and the hydrazonic azomethine nitrogen constituents the chelating backbone in all chelates. Based on magnetic and spectroscopic data, the structures for the chelates are proposed as follows: tetrahedral for [Co(HBMPcH)(H2O)]Cl, octahedral for [Co(HBMPcH)2], [Cr(HBMPcH)Cl(H2O)]2Cl2, [Fe(HBMPcH)Cl-(H2O)]2Cl2, [Ni(BMPcH)(H2O)2], square-planar for (Ni(HBMPcH)Cl], [Pd(HBMPcH)Cl], [Cu(HBMPcH)(H2O)]Cl and tetragonally distorted octahedral for [Cu(BMPcH)(H2O)2]2 chelates. Generally, the solid metal acetate complexes have a unique decomposition exotherm profile which can be used as a rapid and sensitive tool for the detection of acetate-containing complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.