Abstract

We show that an arbitrary spatial distribution of complex refractive index inside an object can be exactly represented as a sum of two "monomorphous" complex distributions, i.e. the distributions with the ratios of the real part to the imaginary part being constant throughout the object. A priori knowledge of constituent materials can be used to estimate the global lower and upper boundaries for this ratio. This approach can be viewed as an extension of the successful phase-retrieval method, based on the Transport of Intensity equation, that was previously developed for monomorphous (homogeneous) objects, such as e.g. objects consisting of a single material. We demonstrate that the monomorphous decomposition can lead to more stable methods for phase retrieval using the Transport of Intensity Equation. Such methods may find application in quantitative in-line phase-contrast imaging and phase-contrast tomography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.