Abstract

The binding of the model proteins HSA, LYZ and MYO to PEC nanoparticles is reported. PEC particles were prepared by mixing solutions of PDADMAC either with PSS or PMA-MS, followed by consecutive centrifugation. Monomodal anionic (PEC-1.50) and cationic (PEC-0.66) PEC particles were obtained using non-stoichiometric mixing ratios. PEC/protein conjugates were prepared by adding charged protein solutions to dispersions of respective like charged PEC particles, followed by one centrifugation step. Mixing proteins and PEC particles under attractive conditions led to flocculation of the dispersion. From CD, DLS and AFM the following trend for protein binding at PEC particles under repulsive conditions was obtained: HSA/PEC-1.50 > MYO/PEC-1.50 > LYZ/PEC-0.66. Protein uptakes up to 0.33 g x g(-1) (protein/PEC) (CD) and particle diameter enlargements up to 13 nm (AFM) were obtained at c(PROT) = 0.091 mg . mL(-1). Furthermore, novel spin coated films of PEC particles were interacted with proteins under both repulsive and attractive conditions. In-situ ATR FT-IR spectroscopy revealed that the adsorbed amount of HSA and LYZ under attractive conditions was significantly higher than under repulsive ones, which is analogous to protein adsorption at polyelectrolyte multilayers terminated either by polycation or polyanion. Similarly to the dispersed PEC/protein conjugates, under repulsive conditions the uptake of HSA was higher compared to LYZ. The shown protein uptake under repulsive conditions is related to concepts of mild enzyme or protein binding at nonbiogenic substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.