Abstract

Cu2CoSnS4, Cu2SnS3, Cu2CoS4, Co2SnS3, Cu2S, CoS2, and SnS2 were synthesized using a one-step solvent-free solid-phase approach. The surface structure, morphology, and composition were characterized using an X-ray diffractometer (XRD), Fourier-Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Photoelectron Spectroscopy (XPS). The characterizations reveal pure phase formation and porous morphology. Further, the Hydrogen evolution reaction was performed using Cu2CoSnS4, Cu2SnS3, Cu2CoS4, Co2SnS3, Cu2S, CoS2, and SnS2-based electrodes. Amid all electrocatalysts, Cu2CoSnS4 shows an excellent hydrogen evolution reaction with a low overpotential of −192.1 mV at −10 mA/cm2 in 0.5 M H2SO4. And higher current density. Cu2CoSnS4 also shows a lower Tafel slope of 98.6 mV/dec and charge transfer resistance than mono and bimetallic chalcogenide-based electrodes. The Cu2CoSnS4 exhibit very good stability for ∼22 h at −10 mA/cm2 current density in 0.5 M H2SO4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.