Abstract

Current intrinsic deficiencies in biomedicine promote the rapid development of alternative multitasking approaches. Recently, monometallic and alloy nanoparticles (NPs) have been widely studied for their potential biomedical applications. However, the research mainly focuses on monometallic compounds and metal oxide NPs that have already been studied. In this review, we investigate promising modified mono- and bimetallic NPs for improving the current state of materials science in medicine. It was contended that effective general biomedical applications can be enhanced by intelligent NP design. Particularly, we discuss transition and platinum metal compositions, iron-based and non-iron compounds, along with liquid alloys. Subsequently, we explore the capabilities provided by modifications such as inorganic and organic coatings, polymers, and biomolecules that can invent new NP designs for precise applications, ultimately resulting in an improved patient outcome. We provide a comprehensive assessment of the advantages and limitations of monometallic and alloy nanomaterials and possible solutions to problems that delay their development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call