Abstract

Potent TLR4-dependent cell activation by Gram-negative bacterial endotoxin depends on sequential endotoxin—protein and protein—protein interactions with LBP, CD14, MD-2 and TLR4. LBP and CD14 combine, in an albumin-dependent fashion, to extract single endotoxin molecules from purified endotoxin aggregates (Eagg) or the bacterial outer membrane and form monomeric endotoxin:CD14 complexes that are the preferred presentation of endotoxin for transfer to MD-2. Endotoxin in endotoxin:CD14 is readily transferred to MD-2, again in an albumin-dependent manner, to form monomeric endotoxin:MD-2 complex. This monomeric endotoxin:protein complex (endotoxin:MD-2) activates TLR4 at picomolar concentrations, independently of albumin, and is, therefore, the apparent ligand in endotoxin-dependent TLR4 activation. Tetra-, penta-, and hexa-acylated forms of meningococcal endotoxin (LOS) react similarly with LBP, CD14, and MD-2 to form endotoxin:MD-2 complexes. However, tetra- and penta-acylated LOS:MD-2 complexes are less potent TLR4 agonists than hexa-acylated LOS:MD-2. This is mirrored in the reduced activity of tetra-, penta- versus hexa-acylated LOS aggregates (LOSagg) + LBP toward cells containing mCD14, MD-2, and TLR4. Therefore, changes in agonist potency of under-acylated meninigococcal LOS are determined by differences in properties of monomeric endotoxin:MD-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.