Abstract

Modified bisanthraquinones are complex dimeric natural products containing a cage-like structural motif. For their biosynthesis, monomeric dihydroanthraquinones have been proposed as key intermediates despite not being isolated from natural sources or synthesized as of yet. Here, isolation and characterization of dihydroemodin, as well as dihydrolunatin, synthesized by a biomimetic and chemoenzymatic approach using NADPH-dependent polyhydroxyanthracence reductase (PHAR) from Cochliobolus lunatus followed by Pb(OAc)4 oxidation is reported. Subsequent dimerization through a hetero-Diels-Alder reaction of the dihydroemodin and dihydrolunatin resulted in (-)-flavoskyrin (68 %) and (-)-lunaskyrin (62 %), respectively. Pyridine treatment of (-)-flavoskyrin and (-)-lunaskyrin gave (-)-rugulosin and (-)-2,2'-epi-cytoskyrin A in 64 % and 60 % yield, respectively, through a cascade that involves two dimeric intermediates. Implications of the described synthesis for the biosynthesis of bisanthraquinones by a combination of enzymatic and spontaneous steps are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.