Abstract
Bystander activation of T cells is defined as induction of effector responses by innate cytokines in the absence of cognate antigens and independent of T cell receptor (TCR) signaling. Here we show that C-reactive protein (CRP), a soluble pattern-recognition receptor assembled noncovalently by five identical subunits, can instead trigger bystander activation of CD4 + T cells by evoking allosteric activation and spontaneous signaling of TCR in the absence of cognate antigens. The actions of CRP depend on pattern ligand-binding induced conformational changes that result in the generation of monomeric CRP (mCRP). mCRP binds cholesterol in plasma membranes of CD4 + T cells, thereby shifting the conformational equilibrium of TCR to the cholesterol-unbound, primed state. The spontaneous signaling of primed TCR leads to productive effector responses manifested by upregulation of surface activation markers and release of IFN-γ. Our results thus identify a novel mode of bystander T cell activation triggered by allosteric TCR signaling, and reveal an interesting paradigm wherein innate immune recognition of CRP transforms it to a direct activator that evokes immediate adaptive immune responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.