Abstract
The bond strength of acrylic resin denture teeth used as pontics in fiber-reinforced composite fixed dental prostheses needs to be improved. The purpose of this study was to assess the influence of various chemical surface-conditioning monomers on the ridge-lap surface of acrylic resin denture teeth by determining the strength of their bonding to a composite resin and changes in surface hardness. Acrylic resin denture teeth of 2 different brands (Artic 8 and Vitapan Cuspiform) (n=120) were tested. Four monomer systems were used as surface primers (conditioning): a flowable composite resin, methylmethacrylate 99%, composite primer, and a photopolymerizable dimethacrylate resin. Five surface-conditioning exposure times were used: no conditioning, 1, 5, 15, and 60 minutes. Surface microhardness measurements were made after the application of the monomer systems. Shear bond strength tests were subsequently performed, followed by a new surface microhardness indentation after the application of the load. The evaluation of the changes on specimen surfaces was performed with a scanning electron microscope. The differences between the shear bond strength and the surface hardness were evaluated for statistical significance by using a 3-way ANOVA. Tooth brand, monomer used, exposure time, and their 2- and 3-way interactions had a significant effect on the shear bond strength and hardness before and after testing, except for the 3-way interaction effect on hardness before testing. The chemical pretreatment of the ridge-lap surface of acrylic resin denture teeth increased the shear bond strength and influenced the surface hardness. The monomer systems caused dissolution on the denture surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.