Abstract

Ethanol serves as a biomarker as well as a chemical reagent for several applications and has been predominantly used as an alternative fuel (E10 and E85). Development of sensors for the detection and monitoring of ethanol vapor at lower operating temperatures has gathered momentum in the recent past. In this work, we reported the synthesis of self-assembled ZnO nanowires using electrospun technique without using any external surfactants or capping agents and their room temperature ethanol sensing properties. An inherent template namely monomer of the polymer poly(vinyl alcohol) (PVA) with two different molecular weights (14 000 and 140 000 g mol-1) was used along with the precursor zinc acetate dihydrate. The ZnO-PVA nanofibers have been tranformed to ZnO nanospheres and nanowires after calcination. The ratio of zinc precursor concentration to PVA polymer led to the enhanced carrier concentration of the resultant ZnO nanowire that enhanced, in turn, the sensing response toward ethanol vapor. The developed sensing elements have been systematically characterized to correlate their structural, morphological, and electrical properties with the respective room-temperature ethanol-sensing characteristics. The role of grain features and low activation energy of ZnO nanowires in coordination with the low dipole moment of ethanol resulted in the excellent response of 78 toward 100 ppm at room temperature with ultra-sensitive response and recovery times (9 and 12 s, respectively).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.