Abstract

The monomer-aggregate exchange rate in self-assembled dialkyl chain cationic-nonionic mixed surfactant aggregates has been studied using small-angle neutron scattering, SANS, and a stopped-flow apparatus. SANS was used to follow the evolution of the structure with time of an equimolar mixture of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide, DHDAB, in D2O with the nonionic surfactant dodecaethylene monododecyl ether, C12E12, in D2O at a solution concentration of 1.5 mM. With increasing time, the bilamellar vesicle structure, blv, of DHDAB and the globular micellar structure, L1, of C12E12 evolved to a lamellar (Lbeta or Lalpha)/micellar (L1) coexistence. Measurements were made for the isotopically labeled combinations of hydrogeneous DHDAB (h-DHDAB) and alkyl chain deuterium-labeled C12E12 (d-C12E12) in D2O such that the lamellar contribution is the predominantly visible contribution to the scattering. From the variation (decrease) in the scattering intensity with time (measured at a scattering vector of approximately 0.014 angstroms(-1)), a characteristic time was measured at 32 degrees C (T < Lbeta/Lalpha transition temperature) and at 46 degrees C (T > Lbeta/Lalpha). The characteristic time was approximately 130 min and a few seconds respectively, indicating a dramatic change in the monomer/aggregate exchange rate between the solid-like Lbeta and fluid-like Lalpha phases. The characteristic time of approximately 130 min in the Lbeta phase is indicative of a slow monomer-aggregate exchange rate and is consistent with the slow kinetics of adsorption of DHDAB and DHDAB/nonionic surfactant mixtures observed at the air-water interface. This slow adsorption kinetics was assumed to arise from near-surface depletion effects associated with slow monomer/aggregate exchange rates, and these results support and reinforce that hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.