Abstract

This study presents monolithically integrated power circuits, fabricated in a high-voltage GaN-on-Si heterojunction technology. Different advanced concepts are presented and compared with solutions found in the literature. High switching transition slew rates are demonstrated by means of a monolithic power circuit with integrated gate driver. A highly linear temperature sensor is integrated in a GaN-high-electron-mobility transistor (HEMT) power device for the 600 V class and on-state resistance of 53 mΩ. An area-efficient HEMT structure with integrated freewheeling diodes is presented. This structure is applied in a monolithic multilevel converter chip, as well as in a 600 V class half-bridge chip. The multilevel chip is integrated by an advanced printed circuit board embedding technology and tested in inverter operation with a mains voltage output of 120 V RMS . The performance of the half-bridge is demonstrated in a synchronous buck converter operation from 400 to 200 V and with a switching frequency of 3 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.