Abstract

The performance characteristics of a monolithically integrated front-end photoreceiver, consisting of a photodiode and a MODFET amplifier, were analyzed and measured. A vertical scheme of integration was initially used to realize a photoreceiver circuit on InP consisting of an InGaAs p-i-n diode, an InGaAs/InAlAs pseudomorphic MODFET, and passive circuit elements. The device structures were grown by single-step molecular beam epitaxy with an isolating layer in between. The microwave performance of 1- mu m-gate MODFETs in the circuit is characterized by f/sub T/=9 GHz, although identical discrete devices have f/sub T/=30-35 GHz. The degradation is due to additional parasitic capacitances present in this integration scheme. In spite of this disadvantage the bandwidth of the circuit is 2.1 GHz. Integration of the p-i-n diode with 1.0- and 0.25- mu m-gate MODFETs has also been done in a planar scheme using regrowth, and receiver bandwidths of 6.5 GHz were measured. This value is comparable to that of hybrid circuits with InP-based devices.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call