Abstract

This article describes the fabrication of multiscale porous nanocrystalline TiO2 monoliths through a one-step method that combines a sol−gel process and phase separation in template-free conditions. A large-dimension monolith with well-defined macropores and a mesostructured anatase-type TiO2 gel skeleton is spontaneously obtained by controlling the solution pH during the hydrolysis and polycondensation reactions of titanium alkoxides. The size of the macropores is adjusted by the starting composition, and a crystallized anatase TiO2 skeleton is formed without heat treatment. The use of titanium alkoxide strengthens the gel network by the formation of chemical bonding in the condensation reaction, which yields porous monoliths with higher mechanical strength than for the case of porous monoliths derived from colloidal TiO2 using freeze drying to maintain the porous morphology. The average crystallite size of anatase TiO2 nanocrystals was found to be about 3.6 nm for the dried gel and about 5.0 nm for the ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call