Abstract

We describe a batch fabrication process for producing encapsulated monolithic microfluidic structures. The process relies on sacrificial layers of silicon oxide to produce surface micromachined fluid channels. Bulk micromachined interconnects provide an interface between the microchannels and meso-scale fluidics. The full integration of the fabrication processing significantly increases device reproducibility and reduces long-term costs. The design and fabrication of dielectrophoresis (DEP) gating structures configured in both batch-flow and continuous-flow modes are detailed. Highly efficient microparticle preconcentration (up to ∼100× in 100 s) and valving (97% particle routing efficiency) are demonstrated using ac DEP and an accompanying phase separation. The low aspect-ratio fluid channels with integrated microelectrodes are well suited for µm and sub-µm particle manipulation with electric fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.