Abstract

In this letter, we propose and numerically investigate a new vertical-cavity surface-emitting laser (VCSEL) structure consisting of a nearly lambda-thick active optical cavity sandwiched between two planar monolithic subwavelength high-index-contrast gratings (MHCGs) etched directly into the semiconductor layers surrounding the optical cavity. The structure allows the reduction of the vertical thickness of the subsequent MHCG VCSEL to roughly 0.6 $\mu \text{m}$ for emission at 980 nm. Compared with a conventional all-semiconductor VCSEL with distributed Bragg reflector mirrors, the MHCG VCSEL has a shorter effective cavity length and thus a shorter roundtrip cavity time. Our proposed design enables the fabrication of VCSELs with lattice-matched mirror layers in all common semiconductor optoelectronic material systems, or alternatively VCSELs with hybrid HCGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.