Abstract

Assembling nanoscale building blocks into an orderly network with a programmable layout and channel designs represents a critical capability to enable a wide range of stretchable electronics. Here, we demonstrate the growth-in-place integration of silicon nanowire (SiNW) springs into highly stretchable, transparent, and quasicontinuous functional networks with a close to unity interconnection among the discrete electrode joints because of a unique double-lane/double-step guiding edge design. The SiNW networks can be reliably transferred to a soft elastomer substrate, conformally attached to highly curved surfaces, or deployed as self-supporting/movable membranes suspended over voids. A high stretchability of >40% is achieved for the SiNW network on an elastomer, which can be employed as a transparent and semiconducting thin-film material endowed with a high carrier mobility of >50 cm2/(V s), Ion/Ioff ratio >104, and a tunable transmission of >80% over a wide spectrum range. Reversibly stretchable and bendable sensors based on the SiNW network have been successfully demonstrated, where the local strain distribution within the spring network can be directly observed and analyzed by finite element simulations. This SiNW network has a unique potential to eventually establish a new generically purposed waferlike platform for constructing soft electronics with Si-based hard performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.