Abstract

In this paper a process for complete monolithic integration of semiconductor devices and radio-frequency micro-electro-mechanical systems (RF-MEMS) on a single substrate is presented. Our attempt was to combine RF-Schottky-Diodes to form sub-harmonic mixer and RF-MEMS-phaseshifters on a single chip. The diodes were etched from a molecular beam epitaxy grown silicon stack using two mesa etching steps. Nickel forms a nickel-silicon alloy (nickel silicide) during a rapid thermal processing step acting as Schottky-metallisation. On this stack, the RF-MEMS-fabrication starts with its metallisation layers as a back-end process. To insulate the relatively high actuation voltage (20-40 V) from the RF circuitry, a new concept for bias decoupling is presented. To demonstrate the functionality of the semiconductor integration approach, a mixer for 24 GHz has been designed in coplanar waveguide technology, the local oscillator frequency is at 12 GHz . Fabricated within the same run, switched line phaseshifters are used to show the MEMS capabilities. First tests of diodes revealed good results in their DC- and RF characteristics, the conversion loss of the subharmonic zero biased mixer reached 20 dB for 6 dBm power of the local oscillator. Fabricated teststructures of the phaseshifters achieved good results showing that transmission losses lower than 3 dB at a phaseshift of 180° can be reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.