Abstract

AbstractGaAsPN semiconductors are promising material for the development of high-efficiency tandem solar cells on silicon substrates. GaAsPN diluted-nitride alloy is studied as the top-junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. The GaP/Si interface is also studied in order to obtain defect-free GaP/Si pseudo-substrates suitable for the subsequent GaAsPN top junctions growth. Result shows that a double-step growth procedure suppresses most of the microtwins and a bi-stepped Si buffer can be grown, suitable to reduce the anti-phase domains density. We also review our recent progress in materials development of the GaAsPN alloy and our recent studies of all the different building blocks toward the development of a PIN solar cell. GaAsPN alloy with energy bandgap around 1.8 eV, lattice matched with the Si substrate, has been achieved. This alloy displays efficient photoluminescence at room temperature and good light absorption. An early-stage GaAsPN PIN solar cell prototype has been grown on a GaP(001) substrate. The external quantum efficiency and the

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.