Abstract

Nitride semiconductor materials inherently have the intriguing functionalities of simultaneous emission, transmission and photodetection, which enable the photonic integration of emitter, waveguide, modulator and photodiode on a single chip [1-3]. In particular, InGaN/GaN multiple-quantum-well (MQW) diodes exhibit a simultaneous light-emitting light-detecting function, endowing the MQW-diode with the capability of producing transmitter and receiver using same fabrication procedure for visible light communication. Both transmitter and receiver share the identical InGaN/GaN MQW active region. To validate the device concept, we propose a wafer-level procedure for the fabrication of monolithic III-nitride photonic circuit on an III-nitride-on-silicon platform for multifunctional visible light communication. Epitaxial films are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type monolithic III-nitride photonic circuit is obtained by a combination of silicon removal and III-nitride film backside thinning. Monolithic III-nitride photonic circuit of emitter, waveguide and photodiode forms an in-plane visible light communication system [4], and the out-of-plane light emission is used for building a free-space visible light communication system [5]. The III-nitride photonic circuit experimentally demonstrates a data transmission over 100 Mb/s on a wire-bonded chip. Moreover, a full-duplex light communication is demonstrated by utilizing simultaneous light-emitting light-detecting function of the MQW-diode, and the self-interference cancellation method is used to decode the superimposed signals. These results are promising for the development of monolithic III-nitride photonic circuit for diverse applications in visible light communication, optical sensor and intelligent displays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call