Abstract

We report the fabrication of monolithic dielectric mirrors by stacking layers of metal–organic frameworks (MOFs) and indium tin oxide (ITO). Such Hybrid Photonic Band-Gap (PBG) Materials exhibit high optical quality (reflectivities of 80%) and are color tunable over the whole visible range. While the ITO deposition is accomplished by using a conventional sputter process, the highly porous MOF layers are deposited using liquid-phase epitaxy (LPE), therefore yielding crystalline, continuous, and monolithic HKUST-1 SURMOF thin films with high optical performance. We demonstrate the optical sensing capabilities of these monolithic and porous Bragg stacks by investigating the chemo-responsive optical properties (PBG shift and modulation of the intensity of the PBG maximum) upon the exposure to different organic solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.