Abstract
High performance carbon nanotube (CNT) network transistors with on-resistance (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on</sub> ) of <; 250 Ω are successfully integrated as back-end-of-the-line (BEOL) power gating devices onto Si CMOS wafers manufactured using 28-nm process technology. When the power supply is connected through the BEOL CNT network header array, the front-end-of-the-line (FEOL) Si ring oscillators (ROs) achieve a similar quiescent current (I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DDQ</sub> ) and have the comparable active power (P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ACTIVE</sub> ) consumption under the same operation frequency as compared to the operation without the power gating CNT transistors. The fabrication of CNT devices in the BEOL is verified to cause no performance degradation in the underlying FEOL Si CMOS devices. This study has successfully demonstrated heterogeneous integration of advanced Si logic circuits with low-cost and high-mobility CNT transistors in the BEOL fabricated at low, BEOL-compatible temperatures (250 °C).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.