Abstract

Novel monolithic fiber laser architectures utilizing large mode area (LMA) photonic crystal fiber (PCF) and fiber Bragg gratings (FBG) in conventional single-mode fibers (SMF) are presented. The main challenge is to address high cavity losses arising from the intrinsic 18-fold mode-field mismatch between the SMF and the active LMA PCF. Employing an all-fiber, robust and reproducible mode-field matching approach based on graded-index multimode fibers, we numerically and experimentally demonstrate that the SMF-to-LMA PCF coupling can be more than three-fold improved. This MFA approach is further implemented in monolithic fiber laser cavities combining FBGs in SMF and active LMA PCF. We demonstrate that cavity losses can be significantly mitigated when using appropriate MFAs resulting in a substantial increase of the laser output performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call