Abstract

InGaAs/GaAs/AlGaAs multiple wavelength quantum well (QW) semiconductor laser diodes (LDs) have been fabricated by impurity-free vacancy disordering (IFVD) QW intermixing (QWI) method. The IFVD-QWI process was carried out by sputtering-depositing SiO2 mask layers on top of the complete InGaAs/GaAs/AlGaAs QW laser structure, emitting at 980 nm wavelength, and followed by a rapid thermal annealing at 880 °C for 60 s. The lasing wavelength of the devices fabricated from the intermixed wafer was blue-shifted with the increase of the mask layer thickness. The maximum emission wavelength blue shift of a processed as-cleaved laser reached 112 nm with the output-power more than 1000 mW. By using such an IFVD-QWI technique, multi-wavelength integrated LDs have also been successfully fabricated from a single chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.