Abstract

We report monolithic fabrication of parallel-plate electrowetting-on-dielectric (EWOD) chips for digital micro-fluidics of picoliter droplets. Instead of assembling a second substrate to form a top plate-the common practice with all previous parallel-plate EWOD chips-the top plate is surface micromachined as a transparent thin-film membrane that forms a monolithic cavity having a gap height on the order of micrometers with excellent accuracy and uniformity. The membrane is embedded with EWOD driving electrodes and confines droplets against the device substrate to perform digital microfluidic operations. Two main attributes of the monolithic architecture that distinguish it from tradition methods are: (i) it enables excellent control of droplet dimensions down to the micrometer scale, and (ii) it does not require the typical alignment and assembly steps. Basic device functions such as creation and splitting are verified by EWOD actuation of ~100 picoliter droplets surrounded by air or oil inside a 10 μm-high cavity. Additionally, flow focusing of droplets containing 5.3 μm beads demonstrates one example of the utilities afforded by monolithic fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.