Abstract

In this paper, active control schemes are presented to optimize the performance of the distributed amplifier (DA) subject to the process variation. A detailed analysis of the DA with mismatched termination loads has been performed, which reveals that pronounced gain and group-delay ripple arises at the low-frequency end from the reflected waves in the artificial transmission line. To solve this problem, an active variable resistor is proposed as the gate-line termination load. The gain and stability of the cascode DA has also been analyzed, which identifies the most critical component determining the tradeoff between the gain-bandwidth product (GBP) and the stability to be the gate feedback resistor of common-gate field-effect transistor. It is also replaced with the active resistor to maximize GBP, while avoiding oscillations. A nine-section cascode DA with active control features is designed and fabricated using commercial GaAs pseudomorphic high electron-mobility transistor foundry. The measurement shows that the gain and group-delay ripple can be minimized, and GBP can be maximized without oscillations by the active bias controls. Active control schemes allow the monolithic DAs to be fine tuned after the fabrication and, thus, can be a robust DA design methodology against process variation and inaccurate device models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.