Abstract

A new lanthanide metal-organic frameworks NKU-1 have successfully incorporated into poly (BMA-co-EDMA) monolith and evaluated by capillary electrochromatography (CEC). Lanthanide metal-organic frameworks [Eu2(ABTC)1.5(H2O)3(DMA)] (NKU-1) were synthesized by self-assembly of Eu(III) ions and 3,3′,5,5′-azo benzene tetracarboxylic acid ligands have been fabricated into poly(BMA-co-EDMA) monoliths. 1-Butyl-3-methylimidazolium tetrafluoroborate and N,N-dimethylformamide were developed as binary porogen obtaining homogeneous dispersibility for NKU-1 and high permeability for monolithic column. The successful incorporation of NKU-1 into poly(BMA-co-EDMA) was confirmed and characterized by FT-IR spectra, scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer area scanning, and transmission electron microscopy. Separation ability of the NKU-1-poly (BMA-co-EDMA) monoliths was demonstrated by separating four groups of analytes in CEC, including alkylbenzenes, polycyclic aromatic hydrocarbon, aniline series and naphthyl substitutes. Compared with bare monolithic (column efficiency of 100,000plates/m), the NKU-1-poly (BMA-co-EDMA) monoliths have displayed greater column efficiency (maximum 210,000plates/m) and higher permeability, as well as less peak tailing. The results showed that the NKU-1-poly (BMA-co-EDMA) monoliths are promising stationary phases for CEC separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.