Abstract
We demonstrate bioenabled crack-free chiral nematic films prepared via a unidirectional flow of cellulose nanocrystals (CNCs) in the capillary confinement. To facilitate the uniform long-range nanocrystal organization during drying, we utilized tunicate-inspired hydrogen-bonding-rich 3,4,5-trihydroxyphenethylamine hydrochloride (TOPA) for physical cross-linking of nanocrystals with enhanced hydrogen bonding and polyethylene glycol (PEG) as a relaxer of internal stresses in the vicinity of the capillary surface. The CNC/TOPA/PEG film is organized as a left-handed chiral structure parallel to flat walls, and the inner volume of the films displayed transitional herringbone organization across the interfacial region. The resulting thin films also exhibit high mechanical performance compared to brittle films with multiple cracks commonly observed for capillary-formed pure CNC films. The chiral nematic ordering of modified TOPA-PEG-CNC material propagates through the entire thickness of robust monolithic films and across centimeter-sized surface areas, facilitating consistent, vivid iridescence, and enhanced circular polarization. The best performance that prevents the cracks was achieved for a CNC/TOPA/PEG film with a minimal, 3% amount of TOPA. Overall, we suggest that intercalation of small highly adhesive molecules to cellulose nanocrystal-polymer matrices can facilitate uniform flow of liquid crystal phase and drying inside the capillary, resulting in improvement of the ultimate tensile strength and toughness (77% and 100% increase, respectively) with controlled uniform optical reflection and enhanced circular polarization unachievable during regular drying conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.