Abstract

Objectivesto evaluate the probability of survival and failure modes of lithium-disilicate, feldspathic-ceramic, and resin-nanoceramic anterior veneers cemented on dentin analog substrates after sliding-contact step-stress accelerated life testing (SSALT). MethodsA virtual incisor tooth preparation was produced with a reduction of 1.5mm at the incisal edge and of 0.7mm buccally. A .STL file of the preparation was generated and CAD/CAM based G10 dentin-analog material was used for testing. Laminate veneers were milled in three different materials: lithium-disilicate (LDS, E.max CAD), resin-nanoceramic (RN, Lava Ultimate), and feldspathic-ceramic (FELDS, Vita Blocks). SSALT was employed where a spherical indenter contacted the veneer, slided along its interface with G10 to lift off and start a new cycle at 2Hz in water. Qualitative fractography was performed. The probability of survival (90% confidence-bounds) was calculated for several load/cycle missions. ResultsThe probability of survival for a mission of 50,000 cycles decreased from 50 up to 150N equally for all groups and were not different between them. At 200N, the probability of survival was significantly lower for FELDS (10%) compared to RN veneers (41%), whereas LDS presented intermediate values (22%). The characteristic strength of RN (247N) was significantly higher than LDS (149N), and FELDS (151N). In FELDS and LDS, hackles, wake hackles and twist hackles indicated the direction of crack propagation. In RN, hackles were observed. ConclusionsDifferences in probability of survival were observed only at 180 and 200N between groups. Failure modes were similar with veneer fracture down to the tooth-analog substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.