Abstract
A monolithic nonphosphor broadband-emission light-emitting diode is demonstrated, comprising a combination of high-density microstructured and nanostructured InGaN-GaN quantum wells fabricated using a top-down approach. Broadband emission is achieved by taking advantage of low-dimensional-induced strain-relaxation of highly strained quantum wells, combining light emitted from strain-relaxed nanotips at wavelengths shorter than the as-grown by as much as 80 nm with longer-wavelength light emitted from the larger nonrelaxed microdisks. The localized emission characteristics have been studied by spatially resolved near-field photoluminescence spectroscopy which enabled both the photoluminescence intensity and spectrum from individual nanotips to be distinguished from emission at the larger-dimensioned regions. Distinctive blue-green-yellow emission can be observed from the electroluminescent device, whose continuous broadband spectrum is characterized by CIE coordinates of (0.39, 0.47) and color rendering in...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.