Abstract

The fabrication of optical add-drop multiplexers in fused silica is demonstrated, for the first time to our knowledge, using the femtosecond laser direct writing technique. To achieve this, a Mach-Zehnder interferometer configuration was used for the signal routing by the implementation of 3-dB directional couplers, along with Bragg grating waveguides for wavelength selectivity. The fabrication of all individual devices required was optimized. The behavior of the fabricated add-drop multiplexer was characterized at around 1550 nm, where a 3-dB bandwidth of 0.19 ± 0.01 nm was obtained along with an intrachannel and adjacent interchannel crosstalk of -30 and -20 dB at Δλ = ± 0.75 nm, respectively. This study shows that such complex devices can be manufactured by femtosecond laser direct writing, with future improvements being discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.