Abstract

AbstractVertical cavity surface emitting laser (VCSEL) structure designed at 1.55 μm was grown by low pressure metalorganic chemical vapor deposition method. The VCSEL structure contains top and bottom distributed Bragg reflector (DBR) and single cavity active layer. The DBR was grown with In0.53Al0.14Ga0.33As and In0.52Al0.48As quarter lambda wavelength layer, alternatively. The growth temperature was as high as 750°C to prevent ordering and phase separation of the In0 52Al0.48As layer. The In0.52Al0.48As buffer layer was subsequently grown on the InP buffer layer in order to make an abrupt uniform interface. Unity reflectance was achieved at the center of 1.55 μm with 35.5 pairs undoped DBR layer. The reflectance spectrum of undoped DBR showed a wide flat-band region (greater than 50 nm) where the reflectivity was more than 99.5 %. The center wavelength of DBR was previously determined by an in-situ laser reflectometry technique during the growth of the whole structure. An infrared laser operating at 1.53 μm, which was the design wavelength of DBR layer was used as an in-situ measuring tool. The In0.53Ga0.47As multiple quantum well was used as a cavity layer. The reflectance spectrum of VCSEL structure, which included a single cavity active layer, showed excellent square shaped stop band and also showed an absorption region at the center of the flat band.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call