Abstract

Mass spectrometric analysis of lignin for developing biomaterials requires advances of characterization techniques. Positive ion mass spectrometry of lignin model compounds using lithium has recently been explored as a viable alternative to current negative mode techniques. To date, little is known about the impact of lithium adduct ion formation on relative response factors of lignin and lignin decomposition products. In this contribution, we report estimates of lithium cation basicity for synthetic monolignols H, G and S using Cooks’ kinetic method on a linear quadrupole ion trap mass spectrometer. Optimized geometries and interaction energies have also been calculated by DFT methods to quantify the electrostatic cation coordination. Based on a combination of experimental and computational evidence, lithium appears to preferentially bind to the phenol and methoxy substituents on the aromatic ring of monolignols. The strength of this interaction increases with the number of methoxy substituents (S > G > H). This work serves as a basis of understanding for future work in developing lithium adducted lignin mass spectrometric analytical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.