Abstract

Self-assembled monolayers of biphenyl-3,4′,5-tricarboxylic acid (BPTCA) on Au(111)/mica substrates modified by underpotential deposited layers of Cu and Ag were studied by scanning tunneling microscopy under ambient conditions as well as by synchrotron-based X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. BPTCA forms distinctly different layers on Ag and Cu due to a pronounced influence of the substrate on the balance of intermolecular and molecule–substrate interactions. On Cu a highly crystalline commensurate row structure is formed, described by a 6 × √3 unit cell, a molecular tilt of 45–50° relative to the surface normal, and a bipodal bidentate adsorption geometry. In contrast, incommensurate row structures are formed on Ag which are characterized by significant waves and kinks, a monopodal bidentate adsorption geometry, and a tilt angle of 25–30°. While BPTCA parallels its smaller homologue, benzene-1,3,5-tricarboxylic acid, with regard to the substrate-specific monopodal and bipodal adsorption geometries, the preparation conditions for the monolayer on Cu and the film structure on Ag are pronouncedly different. The results are discussed in terms of the steric requirements and molecular symmetry of BPTCA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.