Abstract

Reducing the dimensions of materials is one of the key approaches to discovering novel optical phenomena. The recent emergence of 2D transition metal dichalcogenides (TMDCs) has provided a promising platform for exploring new optoelectronic device applications, with their tunable electronic properties, structural controllability, and unique spin valley-coupled systems. This progress report provides an overview of recent advances in TMDC-based light-emitting devices discussed from several aspects in terms of device concepts, material designs, device fabrication, and their diverse functionalities. First, the advantages of TMDCs used in light-emitting devices and their possible functionalities are presented. Second, conventional approaches for fabricating TMDC light-emitting devices are emphasized, followed by introducing a newly established, versatile method for generating light emission in TMDCs. Third, current growing technologies for heterostructure fabrication, in which distinct TMDCs are vertically stacked or laterally stitched, are explained as a possible means for designing high-performance light-emitting devices. Finally, utilizing the topological features of TMDCs, the challenges for controlling circularly polarized light emission and its device applications are discussed from both theoretical and experimental points of view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call