Abstract

The urgent demand for atomically thin, superlubricating, and super wear-resistant materials in micro/nanoelectromechanical systems has stimulated the research of friction-reducing and antiwear materials. However, the fabrication of subnanometer-thick films with superlubricating and super wear-resistant properties under ambient conditions remains a huge challenge. Herein, high-quality monolayer (ML) NbSe2 (∼0.8 nm) with ultralow friction and super wear resistance in an atmospheric environment was successfully grown by chemical vapor deposition (CVD) for the first time. Moreover, compared with few-layered (FL) NbSe2, ML NbSe2 has a lower friction coefficient and better wear resistance. On the basis of density function theory (DFT) calculations, the adhesion and the degree of charge transfer between ML NbSe2 and the substrate is larger than that of the topmost layer to the underlying layers of NbSe2 with two or more layers, which can be used to explain that the ML NbSe2 favors ultralow friction and super wear resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.