Abstract
The carotenoids are sensitive molecules and their chemical integrity must be preserved from pro-oxidant elements which could affect and decrease their physiological benefits. The encapsulation based on the inclusion of the carotenoids into cage molecules is a promising approach for preserving over time of the intrinsic properties of the carotenoids. It is well known that cyclic oligosaccharide β-cyclodextrin (CD) as a cage molecule possesses strong inclusion ability to β-carotene (C) and as a result of the hydrophobic interactions forms an inclusion complex.In the present paper a monolayer kinetic model was established with the notion to extract more information about the influence of the molecular structure and organization to the interfacial interactions between the interacting species as well as about the role of the specific areas, which are often underestimated in previously studied dispersed systems. We developed the monolayer kinetic model for the formation of the inclusion CD–C complex by applying an experimental approach for following the kinetics by means of measuring the decrease of the surface area (ΔA) versus time (t) at constant surface pressure (π) and the decrease of surface pressure (π) versus time (t) at constant surface area (A). We also visualized by AFM the state of the monolayers at the initial and end points of the kinetic process. The values for the degree (d) and constant (Ka) of the association were estimated and compared with those from the studies of dispersed systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.