Abstract

There have been significant recent developments in the field of integrated optical Bragg grating sensors for use in the biological domain, where changes in the thickness of a surface layer upon specific binding of biological targets allows quantitative detection. However in the chemical domain less work has been reported. We present here an integrated optical Bragg grating sensor, capable of evanescently detecting small changes in refractive index down to 10(-6) RIU at infrared wavelengths, within a microfluidic system. The high spectral fidelity of the Bragg gratings combined with precise thermal compensation enables direct monitoring of the surface throughout the experiment. This allows the sensor to probe surface changes in situ and in real-time, from preparation through to chemical modification of the surface, so that the progress of dynamic surface-localized interactions can be followed. Here we describe confirmatory studies to validate this approach, including a comparison with the modelled optical system, before assessing the ability to detect binding of Group I cations at a crown ether-functionalised supramolecular surface. Unlike larger biological entities, for these small chemical species, simple additive changes in film-thickness no longer prevail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.