Abstract

The monolayer halides CrX$_3$ (X=Cl, Br, I) attract significant attention for realizing 2D magnets with genuine long-range order (LRO), challenging the Mermin-Wagner theorem. Here, we show that monolayer CrCl$_3$ has the unique benefit of exhibiting tunable magnetic anisotropy upon applying a compressive strain. This opens the possibility to use CrCl$_3$ for producing and studying both ferromagnetic and antiferromagnetic 2D Ising-type LRO as well as the Berezinskii-Kosterlitz-Thouless (BKT) regime of 2D magnetism with quasi-LRO. Using state-of-the-art density functional theory, we explain how realistic compressive strain could be used to tune the monolayer's magnetic properties so that it could exhibit any of these phases. Building on large-scale quantum Monte Carlo simulations, we compute the phase diagram of strained CrCl$_3$, as well as the magnon spectrum with spin-wave theory. Our results highlight the eminent suitability of monolayer CrCl$_3$ to achieve very high BKT transition temperatures, around 50 K, due to their singular dependence on the weak easy-plane anisotropy of the material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call