Abstract

In this work, CoMoS catalysts were synthesized onto porous alumina spheres obtained using Pluronic P-123 (PS) or urea (US) and used as bifunctional nanomaterials for two energy applications: hydrodesulfurization and energy storage. For the first application, the catalysts were assessed in a hydrodesulfurization reactor using two model sulfur molecules, dibenzothiophene and 4,6-dimethyl dibenzothiophene, as well as feeding a heavy oil fraction. The results indicated that the spheres obtained by Pluronic P-123 allowed a greater dispersion degree of MoS2 slabs than US, indicating that the size and hierarchically porous structure of alumina spheres played a principal role as a booster of the HDS catalytic efficiency of DBT, 4,6 DMDBT and diesel fuel. Then, these catalysts were used for the electrocatalysis of the oxygen reduction and oxygen evolution reactions (ORR/OER), which take place in rechargeable Zn-air batteries. For the ORR, the CoMoS catalyst on PS in the presence of a conductive support (N-doped carbon nanotubes + graphene) displayed an overpotential of only 90 mV in comparison with Pt/C. Importantly, the chalcogenide enabled an increase in the stability, maintaining almost two times higher current retention than Pt/C for the ORR and IrO2/C for the OER. These results suggest that expended chalcogenides from the hydrodesulfurization industry can have a second life as co-catalysts for renewable energy storage systems, enabling a circular economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.