Abstract

AbstractCartesian reverse differential categories (CRDCs) are a recently defined structure which categorically model the reverse differentiation operations used in supervised learning. Here, we define a related structure called a monoidal reverse differential category, prove important results about its relationship to CRDCs, and provide examples of both structures, including examples coming from models of quantum computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.