Abstract
We present a new model of computation, described in terms of monoidal categories. It conforms to the Church–Turing Thesis, and captures the same computable functions as the standard models. It provides a succinct categorical interface to most of them, free of their diverse implementation details, using the ideas and structures that in the meantime emerged from research in semantics of computation and programming. The salient feature of the language of monoidal categories is that it is supported by a sound and complete graphical formalism, string diagrams, which provide a concrete and intuitive interface for abstract reasoning about computation. The original motivation and the ultimate goal of this effort is to provide a convenient high level programming language for a theory of computational resources, such as one-way functions, and trapdoor functions, by adopting the methods for hiding the low level implementation details that emerged from practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.