Abstract
Cyanobacterial monoglucosyldiacylglycerol (MGlcDG) not only serves as a precursor for monogalactosyldiacylglycerol (MGDG) synthesis, but also participates in stress acclimation. Two genes (mgdA and mgdE) related to MGDG synthesis of Synechococcus sp. PCC 7942 were identified. The mgdE-suppressed mutant (AE) accumulated MGlcDG (4.2%) and showed better growth and photosynthetic activities compared with WT and other mutants (mgdA/mgdE-overexpressed and mgdA-suppressed strains), which suggested that MGlcDG was involved in phosphate stress adaptation for Synechococcus sp. PCC 7942. A notable increase in contents of 18:1 fatty acid (FA) of MGDG (127%), DGDG (68%), and SQDG (105%) in AE were found under phosphate starvation. However, the expression of △9 desaturase (desC) was not higher in AE than that in WT during phosphate-starved period. These results suggested that MGlcDG might be involved in the process of FA desaturation, which contributed to membrane fluidity and cell basic metabolism for stress acclimation in cyanobacteria. In complementary experiments of E. coli, although the expression of mgdA and desC in the mgdA and desC coexpressed strain (OEAC) reduced by 22% and 35% compared with that of the strains only overexpressing mgdA (OEA) or desC (OEC), the content of unsaturated FA in OEAC was the highest. This further implied that the accumulation of MGlcDG could prompt FA desaturation in E. coli. Therefore, we propose that an overproduction of MGlcDG is responsible for FA desaturation and participates in phosphate stress adaptation in cyanobacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.