Abstract

BackgroundInfants with neonatal-onset diarrhea present with intractable diarrhea in the first few weeks of life. A monogenic mutation is one of the disease etiologies and the use of next-generation sequencing (NGS) has made it possible to screen patients for their mutations.Main bodyWe retrospectively reviewed the clinical data of four children from unrelated families, who presented with neonatal-onset, chronic, watery, non-bloody diarrhea. After genetic whole-exome sequencing, novel mutations were identified in the EPCAM gene of two children. Congenital chloride diarrhea was diagnosed in one case, which was associated with an SLC26A3 mutation, in which the patient presented with watery diarrhea, malnutrition, and hypochloremic alkalosis. Patient 4 was diagnosed with microvillus inclusion disease and possessed novel compound heterozygous mutations in the MYO5B gene. A review of the genetic variants of SLC26A3 reported in East Asia revealed that c.269_270 dupAA (p.G91Kfs*3) is the most frequent SLC26A3 mutation in China, compared with c.2063-1 G > T in Japan and Korea. EPCAM and MYO5B genetic variants were only sporadically reported in East Asia.ConclusionThis study expands our knowledge of the clinical manifestations and molecular genetics of neonatal-onset watery diarrhea. Early diagnosis could be achieved by genomic analysis in those infants whose histology features are not typical. The discovery of four novel mutations in the EPCAM gene and two novel mutations in the MYO5B gene provides further etiological evidence for the association of genetic mutations with neonatal-onset diarrhea. To date, c.269_270 dupAA is the most frequent SLC26A3 mutation in China.

Highlights

  • Infants with neonatal-onset diarrhea present with intractable diarrhea in the first few weeks of life

  • We report four cases of patients who presented with neonatal-onset watery diarrhea and who carried monogenic mutations, including 2 congenital tufting enteropathy (CTE), 1 microvillus inclusion disease (MVID), and 1 congenital chloride diarrhea (CCD)

  • We review the genetic variants of solute carrier family 26 member 3 (SLC26A3), epithelial cell adhesion molecule (EPCAM), and myosin VB (MYO5B) that have been reported in East Asia

Read more

Summary

Introduction

Infants with neonatal-onset diarrhea present with intractable diarrhea in the first few weeks of life. Main body: We retrospectively reviewed the clinical data of four children from unrelated families, who presented with neonatal-onset, chronic, watery, non-bloody diarrhea. After genetic whole-exome sequencing, novel mutations were identified in the EPCAM gene of two children. Congenital chloride diarrhea was diagnosed in one case, which was associated with an SLC26A3 mutation, in which the patient presented with watery diarrhea, malnutrition, and hypochloremic alkalosis. Patient 4 was diagnosed with microvillus inclusion disease and possessed novel compound heterozygous mutations in the MYO5B gene. Most CODEs are monogenic and can be classified into five major categories [1, 2]: (a) defects in epithelial nutrient and electrolyte transport, such as congenital chloride diarrhea (CCD) and glucose-galactose malabsorption; (b) epithelial enzymes and metabolism defects, such as congenital lactase deficiency and chylomicron retention disease; (c) defects in epithelial trafficking and polarity, such as microvillus inclusion disease (MVID) and congenital tufting enteropathy (CTE); (d) enteroendocrine cell dysfunction, such as enteric anendocrinosis; and (e) immune dysregulation-associated enteropathy, such as IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome. Nextgeneration sequencing (NGS) has contributed to great advances in this field, by enabling investigations into the genetic basis of monogenic disorders causing CODEs and allowing for appropriate treatment to be initiated earlier

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call