Abstract

Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions.Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data.Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root point, and the length between the inner root point and the dent point. The species on M. buchanani evolved larger, more robust anchors; those on L. subviridis evolved smaller, more delicate anchors. Anchor shape and size were significantly correlated, suggesting constraints in anchor evolution. Tight integration between the root and the point compartments within anchors confirms the anchor as a single, fully integrated module. The correlation between male copulatory organ morphology and size with anchor shape was consistent with predictions from the Rohde-Hobbs hypothesis.Conclusions. Monogenean anchors are tightly integrated structures, and their shape variation correlates strongly with phylogeny, thus underscoring their value for systematic and evolutionary biology studies. Our MonogeneaGM R package provides tools for researchers to mine biological insights from geometric morphometric data of speciose monogenean genera.

Highlights

  • The Monogenea is a class of flatworms (Platyhelminthes) that are primarily ectoparasites of fish (Whittington, 2005; Hayward, 2005)

  • Results from the Adams-Collyer phylogenetic regression indicated that the interaction of body size and anchor size was not statistically significant in the dorsal anchor (p-value = 0.2), but anchor size was a significant predictor of anchor shape (p-value = 0.01)

  • The most recent common ancestor of L. navjotsodhii and L. chelatus probably evolved character states 000 or 001 from 113, and divergence of these two species was associated with a change in the third character state, with only relatively minor change in either anchor shape and size or copulatory organ size

Read more

Summary

Introduction

The Monogenea is a class of flatworms (Platyhelminthes) that are primarily ectoparasites of fish (Whittington, 2005; Hayward, 2005). Many of its genera are speciose, morphologically diverse, show well-resolved phylogenies at the familial level (Boeger & Kritsky, 1997; Boeger & Kritsky, 2001; Mollaret, Jamieson & Justine, 2000), and samples can be obtained in large numbers It has been used as a model to shed light on ecological forces that shape species community and structure (Rohde, 1979; Mouillot et al, 2005; Raeymaekers et al, 2008), to investigate processes leading to speciation and its maintenance (Rohde & Hobbs, 1986; Rohde, 1994; De Meeus, Michalakis & Renaud, 1998; Šimková et al, 2002; Hahn et al, 2015; Vanhove & Huyse, 2015), to elucidate host-parasite evolutionary ecology (Desdevises et al, 2002; Huyse, Audenaert & Volckaert, 2003; Huyse & Volckaert, 2005; Šimková et al, 2006; Šimková & Morand, 2008; Mendlová & Šimková, 2014; Grégoir et al, 2015), and to explore the extent of correlation between phenotype variation in attachment organs and factors such as phylogeny, host specificity and geographical location (Vignon, Pariselle & Vanhove, 2011).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call