Abstract

We investigate the dynamics of information among the parties of tripartite systems. We start by proving two results concerning the monogamy of mutual information. The first one states that mutual information is monogamous for generic tripartite pure states. The second shows that, in general, mutual information is monogamous only if the amount of genuine tripartite correlations is large enough. Then, we analyze the internal dynamics of tripartite systems whose parties do not exchange energy. In particular, we allow for one of the subsystems to play the role of a finite thermal bath. As a result, we find a typical scenario in which local information tends to be converted into delocalized information. Moreover, we show that (i) the information flow is reversible for finite thermal baths at low temperatures, (ii) monogamy of mutual information is respected throughout the dynamics, and (iii) genuine tripartite correlations are typically present. Finally, we analytically calculate a quantity capable of revealing favorable regimes for non-Markovianity in our model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call