Abstract

Platinum anticancer therapeutics are widely used in a variety of chemotherapy regimens. Recent work has revealed that the cytotoxicity of oxaliplatin and phenanthriplatin is through induction of ribosome biogenesis stress pathways, differentiating them from cisplatin and other compounds that mainly work through DNA damage response mechanisms. To probe the structure-activity relationships in phenanthriplatin's ability to cause nucleolar stress, a series of monofunctional platinum(II) compounds differing in ring number, size and orientation was tested by nucleophosmin (NPM1) relocalization assays using A549 cells. Phenanthriplatin was found to be unique among these compounds in inducing NPM1 relocalization. To decipher underlying reasons, computational predictions of steric bulk, platinum(II) compound surface length and hydrophobicity were performed for all compounds. Of the monofunctional platinum(II) compounds tested, phenanthriplatin has the highest calculated hydrophobicity and volume but does not exhibit the largest distance from platinum(II) to the surface. Thus, spatial orientation and/or hydrophobicity caused by the presence of a third aromatic ring may be significant factors in the ability of phenanthriplatin to cause nucleolar stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.