Abstract

We show that a pair of field theory monodromies in which the shift symmetry is broken by small, well motivated deformations, naturally incorporates a mechanism for cancelling off radiative corrections to the cosmological constant. The lighter monodromy sector plays the role of inflation as well as providing a rigid degree of freedom that acts as a dynamical counterterm for the cosmological constant. The heavier monodromy sector includes a rigid dilaton that forces a global constraint on the system and the cancellation of vacuum energy loops occurs at low energies via the sequestering mechanism. This suggests that monodromy constructions in string theory could be adapted to incorporate mechanisms to stabilise the cosmological constant in their low energy descriptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.