Abstract

In this work we give a formula for the local Denef–Loeser zeta function of a superisolated singularity of hypersurface in terms of the local Denef–Loeser zeta function of the singularities of its tangent cone. We prove the monodromy conjecture for some surfaces singularities. These results are applied to the study of rational arrangements of plane curves whose Euler–Poincaré characteristic is three.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.